
Positional Tolerances

Howard Gibson C.E.T., hgibson@eol.ca

2018/12/26

1 Introduction

In Geometric Dimensioning and Tolerancing (GD&T), holes are located using
positional tolerances. It is claimed that these positional tolerances allow 50%
more variation compared to traditional ± tolerances. These extra holes all
are functional. This is true if fabricated holes are scattered evenly around
the nominal position. It is not true, otherwise.

Dimension units are not being shown on this document. It has been
assumed that they are millimetres, but it really does not matter to the dis-
cussion. On engineering drawings, the units are declared somewhere on the
title-block, and they are not indicated on the drawing itself.

2 Tolerance Specification

Figure 1 shows the areas of a ± tolerance and an equivalent GD&T style
positional tolerance. For most holes, the allowable error is a radial displace-
ment. The ± tolerance defines a square that does not exceed this. The
GD&T positional tolerance defines the total functional area.

TOL =
LAB

2

POS = LAC

From Pythagoras . . . LAC =
√
2L2

AB = 1.41LAB

1

TOL
+
−

POSA B

C

Figure 1: Allowables

Area ±tolerance: Apm = L2
AB

Area positional: Apos =
πL2

AC

4
=

3.14× (1.41LAB)
2

4
= 1.57L2

AB

So far, so good. The acceptable error for locating most holes is a radius.
The GD&T positional tolerance defines this radius. It provides 50% more
allowance, all of which is functional.

The problem with this is that as-measured dimensions do not scatter
evenly. Generally, they cluster about the nominal position in something like
Normal1 distribution. It is implied that the tolerances called up on drawings
represent the ±3σ interval on the Normal curve.2 This is not true.

Random scatter is a function of the manufacturing process. Good drafting
practice is to specify tolerances required to make the part work. These should
be as loose as possible, and it is desirable that they be well outside 3σ of the
process. Standard deviation comes from the QC inspector, not the designer.

1Normal distribution is discussed in the Appendix .
2I have been preparing drawings for over thirty years. I don’t set positional tolerances

to 3σ. I want 3σ to be well within my positional tolerances.

2

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

'XYcoords'

'PMtols'

'GDTpos'

X/Y Scatter

Figure 2: Normal Scattered Data

3 Normal Distribution

For the purposes of analysis, it is assumed that the specified positional tol-
erance is equal to 3σ. A pattern of holes is randomly generated in a Normal
distribution pattern. Each hole position is worked out as a polar coordinate.
The angle is randomly generated. The radii are worked out randomly with
Normal distribution. The polar coordinates are converted to X/Y . Normal
distribution and the Octave code are shown in the appendix. Here are the
assumptions. . .

± tolerance 0.2
3σ 0.283

Data points 1000

The positional tolerance has been calculated as �0.570. On Figure 2 ,
there are 24 holes outside the ± tolerance range, out of 1000 total.3

3This has been run multiple times. For the Normal distribution, we usually get ten to
twenty holes outside the specified ±Tolerance.

3

3.1 Sanity Check

We are generating random data sets, which are supposed to be or to approx-
imate Normal curves. Do they?

We are evaluating the Normally scattered data in Figure 2 .

1. The first we can do is examine Figure 2 and look for holes located
outside 3σ. 3σ has been arbitrarily set to GD&T positional tolerance,
shown as the circle on Figure 2 . 99.7% of the data should be inside
the circle, and 0.3% should be outside it. By observation, on most runs
of this program, we see that holes are outside the 3σ circle.

2. We can work out standard deviation for the data. Since I have gen-
erated the data from 3σ, it is obvious what σ ought to be. When we
work this out for our Normal data set, we get σ=0.097 . This ought to
be 1/3 of the 3σ value I punched in, 0.283. This is about right.

3. With Normal distribution, 68% of the radii should fall inside σ. 99.5%
of the radii should fall inside 2σ. We can calculate σ from the as-
signed 3σ, and verify this. It turns out that there are 670 holes located
inside σ. There are 952 holes inside 2σ. There are 998 holes inside 3σ.
This all is out of 1000 holes.

This is working!

4 Exponent Distribution

The Normal distribution shown above is correct, but difficult to model on a
slow computer, or with a spreadsheet. A quick and dirty way to generate
random numbers weighted towards zero, is to generate a random number and
take it to some exponent.

We have three columns, Normal, Match 1σ, and Match 2σ. We want to
match values from authentic Normal data. Exponent values were punched in
and tested. As can be seen from Figure 3 and Figure 4 , the scattered data
do not look like Normal scattered data. Exponents can be selected which
match certain parts of Normal distribution.

4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

'XYcoords'

'PMtols'

'GDTpos'

X/Y Scatter

Figure 3: Exponent Distribution R2.8

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

'XYcoords'

'PMtols'

'GDTpos'

X/Y Scatter

Figure 4: Exponent Distribution R9

5

Normal Match 1σ Match 2σ
Exponent R2.8 R9

± tolerance 0.2 0.2 0.2
3σ 0.283 0.283 0.283

random sample size 1000 1000 1000
positional tolerance �0.570 �0.570 �0.570

holes outside ± tolerance 24 73 18
mean X 0.001672 0.000587 -0.000065
mean Y 0.001601 0.000587 -0.000035

σ from data 0.097 0.106 0.063
holes inside 1σ 670 699 882
holes inside 2σ 952 877 962
holes inside 3σ 998 998 1000

For the Exponent data, the holes inside 3σ sometimes work out to less
than 1000. This ought to not happen. The problem seems to be a rounding
error somewhere.

5 Conclusions

If we assume that the GD&T positional tolerances approximate the fabrica-
tor’s 3σ,4 and that the fabricated holes scatter normally, it is unlikely that
more than 2% of holes will be outside the ± tolerance zone.

The exponent distribution does a poor job of approximating Normal dis-
tribution. This might be good enough for a spreadsheet. If you are writing
code on a reasonably fast computer, proper Normal distribution is manage-
able.

6 Why Positional Tolerances?

Assume for the moment that the positional tolerance called up is set to
the process 3σ. It can be seen from Figure 2 that the ± tolerance will
capture around 98% of the correctly located holes. It is good design practice
to ensure that fabrication capability is well within the required tolerances,
when ensures that the ± tolerances capture even more valid data. This is
not a good case for positional tolerancing.

4As noted previously, there is no reason why we should.

6

−
+ 0.280.5

− 0.2+6.5

− 0.2+6.5

40.5

11.2

10.2

11.2

10.2

0.3 BA C

BA C0.8

Figure 5: Dimensions to Holes

7

There is no reason why the distribution of holes should be Normal or
even exponent distribution. Scatter may be caused by errors in the gears
and encoders of a CNC machine. It may be caused by clearance of bushings
in a drill jig. It may be caused by someone mis-reading prints.

Figure 5 shows holes located by ± tolerances, and by positional toler-
ances. As shown, the 11.2/1.2 hole is located within a 0.8 diameter. On the
± location (80.5), the tolerance must default to the more accurate 6.5 hole.
A positional tolerance is part of the hole specification.

A About This Document

This document is written in LATEX. The data is generated randomly by
programs written in GNU Octave, listed in the appendix. The exponents for
the exponential distribution were selected by the author after much testing.
The scatter diagrams are generated by GNU gnuplot. The final document is
assembled and generated with a GNU Makefile.

B Statistics

B.1 Normal Distribution

From Spiegel[2], page 150, we get the equation of a Normal distribution
curve. . .

Y =
1

σ
√
2π

× e−
1
2
(X−µ)2/σ2

, (1)

. . . where µ is the mean, and σ is the standard deviation.

B.2 Standard Deviation

From Spiegel[2], page 88,

σ =

√√√√√√
N∑
j=1

(
Rj − R̄

)2
N

, (2)

where N is the number of holes.

8

I am managing the hole positions as X/Y coordinates. I am converting
these to polar coordinates, and I am calculating standard deviation on the
radius.

B.3 Exponent Distribution

I cannot find this written up anywhere. A quick and dirty way to generate
Normal-like distribution is to generate random numbers between zero and
one, and take them to some exponent. The exponent values cluster towards
zero. As can be seen by comparing the Normal curve (Figure 2) with Fig-
ure 3 and Figure 4), the exponent curves are not that good a model. If you
are interested in how many values are out close to the positional tolerance
circle, exponent distribution provides a conservative result.

The Normal data is generated by randomly generating numbers along the
horizontal and vertical axes, and then accepting anything that falls below the
Normal curve. This does not work on a spreadsheet.

C Octave Code

The following programs are executed by the makefile. The output is redi-
rected to files that are read by the LATEX code.

C.1 Copyright

The following programs are copyright (C) 2017 by Howard Gibson under the
GNU license.

These programs are free software; you can redistribute them and/or mod-
ify them under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANYWARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

For a copy of the GNU General Public License, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

The author is Howard Gibson, hgibson@eol.ca.

9

C.2 normal.m

#!/usr/bin/octave-cli -qf

File: normal.m

Author: Howard Gibson

Date: 2017/11/28

Project: Positional Tolerance

Language: GNU Octave

#

Generate a random, normally distributed set of hole positions.

#

Syntax: normal.m <PMtol> <3-Sigma> <Size> <Filename>

global x = 1;

global y = 2;

global deg = pi/180;

function Return = roundf(Num, Dec)

Roundable = Num*10^Dec;

Rounded = round(Roundable);

Return = Rounded/10^Dec;

endfunction

function [xv,yv] = polar2XY(a, r)

xv = r*cos(a);

yv = r*sin(a);

endfunction

function height = norm(Xval, Mean, Sigma3)

Sigma = Sigma3/3;

height = 1/(Sigma*sqrt(2*pi)) * exp(-1/2*(Xval-Mean)^2/Sigma^2);

endfunction

function ScatteredDims = MakeNormal(Sigma3, Size)

global x y;

SafetyFactor = 1.5;

ScatteredDims = cell(Size, 2);

MaxRadius = SafetyFactor*2*Sigma3;

10

MaxHeight = SafetyFactor*norm(0, 0, Sigma3);

n = loops =1;

while n<=Size

Angle = 2*pi*rand();

Radius = MaxRadius*rand()-MaxRadius/2;

Height = MaxHeight*rand();

if Height < norm(Radius, 0, Sigma3)

[Xerr, Yerr] = polar2XY(Angle,Radius);

ScatteredDims(n,x) = Xerr;

ScatteredDims(n,y) = Yerr;

n = n+1;

endif

loops = loops+1;

endwhile

printf("It took %i loops to generate %i data points.\n", loops, Size);

endfunction

if 4!=length(argv())

printf("Usage: %s <PMtol> <3-Sigma> <Size> <Filename>\n",

program_name());

else

global x y deg;

PlusMinus = str2num(argv(){1});

Position = roundf(2*sqrt(2)*PlusMinus,2);

Sigma3 = str2num(argv(){2});

Size = str2num(argv(){3});

Filename = argv(){4};

ScatteredDims = MakeNormal(Sigma3, Size);

save (Filename, "ScatteredDims");

endif

C.3 sigma.m

#!/usr/bin/octave-cli -qf

File: sigma.m

Author: Howard Gibson

Date: 2017/11/18

Project: Positional Tolerance

11

Language: GNU Octave

#

Work out standard deviation for data file.

#

Syntax: sigma.m <Data file>

global x = 1;

global y = 2;

function [ang, rad] = xy2Polar(xv, yv)

rad = sqrt(xv^2+yv^2);

if xv>0 && yv<0

ang = 2*pi+asin(yv/rad);

elseif xv>0

ang = asin(yv/rad);

elseif xv<0

ang = pi-asin(yv/rad);

else

ang = 100; # Stupid result. This should not happen.

endif

endfunction

function [xm, ym, rm] = mean(ScatteredDims, Size)

global x y;

Xtot = Ytot = Rtot= 0;

for n=1:Size

Xtot = ScatteredDims{n,x}+Xtot;

Ytot = ScatteredDims{n,y}+Ytot;

endfor

xm = Xtot/Size;

ym = Ytot/Size;

for n=1:Size

[Ang, Rad] = xy2Polar(ScatteredDims{n,x}-xm, ScatteredDims{n,y}-ym);

Rtot = Rtot+Rad;

endfor

rm = Rtot/Size;

endfunction

12

if 1!=length(argv())

printf("Usage: %s <Data file>\n", program_name());

else

Filename = argv(){1};

load (Filename, "ScatteredDims");

Size = rows(ScatteredDims);

RadTot = 0;

[Xmean, Ymean, Rmeanp] = mean(ScatteredDims, Size);

for n=1:Size

Xval = ScatteredDims{n,x}-Xmean;

Yval = ScatteredDims{n,y}-Ymean;

RadVal = sqrt(Xval^2+Yval^2);

RadTot = RadTot + RadVal^2;

endfor

sigma = sqrt(RadTot/Size);

printf("%6.3f", sigma);

endif

C.4 exponent.m

#!/usr/bin/octave-cli -qf

File: exponent.m

Author: Howard Gibson

Date: 2017/12/02

Project: Positional Tolerance

Language: GNU Octave

#

Generate a random, square root set of hole positions.

#

Syntax: exponent.m <exp> <PMtol> <3-Sigma> <Size> <Filename>

global x = 1;

global y = 2;

global deg = pi/180;

function Return = roundf(Num, Dec)

Roundable = Num*10^Dec;

Rounded = round(Roundable);

13

Return = Rounded/10^Dec;

endfunction

function [xv,yv] = polar2XY(a, r)

xv = r*cos(a);

yv = r*sin(a);

endfunction

function ScatteredDims = rootMeanSquare(Exponent, Sigma3, Size)

global x y;

ScatteredDims = cell(Size, 2);

MaxRadius = Sigma3;

for n = 1:Size

Angle = 2*pi*rand();

Radius = MaxRadius*rand()^Exponent;

[Xerr, Yerr] = polar2XY(Angle,Radius);

ScatteredDims(n,x) = Xerr;

ScatteredDims(n,y) = Yerr;

if Radius>MaxRadius # This should not be happening

printf("Radius = %5.3f\n", Radius);

endif

endfor

endfunction

if 5!=length(argv())

printf("Usage: %s <exp> <PMtol> <3-Sigma> <Size> <Filename>\n",

program_name());

else

global x y deg;

Exponent = str2num(argv(){1});

PlusMinus = str2num(argv(){2});

Position = roundf(2*sqrt(2)*PlusMinus,2);

Sigma3 = str2num(argv(){3});

Size = str2num(argv(){4});

Filename = argv(){5};

ScatteredDims = rootMeanSquare(Exponent, Sigma3, Size);

save (Filename, "ScatteredDims");

endif

14

References

[1] Tolerance Stack-Up Analysis [for Plus and Minus and Geometric Toler-
ancing] Second Edition James D. Meadows

[2] Schaum’s Outlines – Statistics Second Edition Murray R. Spiegel Mc-
Graw Hill

15

	Introduction
	Tolerance Specification
	Normal Distribution
	Sanity Check

	Exponent Distribution
	Conclusions
	Why Positional Tolerances?
	About This Document
	Statistics
	Normal Distribution
	Standard Deviation
	Exponent Distribution

	Octave Code
	Copyright
	normal.m
	sigma.m
	exponent.m

